Origami Robot Self-folds, Walks, Completes Tasks

MIT's Untethered Miniature Origami Robot could have a variety of medical uses when introduced inside of a human body, potentially zapping cancer cells or unclogging arteries.


This article originally appeared on MIT News.

At the recent International Conference on Robotics and Automation, MIT researchers presented a printable origami robot that folds itself up from a flat sheet of plastic when heated and measures about a centimeter from front to back.

Weighing only a third of a gram, the robot can swim, climb an incline, traverse rough terrain, and carry a load twice its weight. Other than the self-folding plastic sheet, the robot’s only component is a permanent magnet affixed to its back. Its motions are controlled by external magnetic fields.

“The entire walking motion is embedded into the mechanics of the robot body,” says Cynthia R. Sung, an MIT graduate student in electrical engineering and computer science and one of the robot’s co-developers. “In previous [origami] robots, they had to design electronics and motors to actuate the body itself.”

Joining Sung on the paper describing the robot are her advisor, Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science; first author Shuhei Miyashita, a postdoc in Rus’ lab; Steven Guitron, who just received his bachelor’s degree in mechanical engineering from MIT; and Marvin Ludersdorfer of the Technical University of Munich.

Fantastic Voyage

The robot’s design was motivated by a hypothetical application in which tiny sheets of material would be injected into the human body, navigate to an intervention site, fold themselves up, and, when they had finished their assigned tasks, dissolve. To that end, the researchers built their prototypes from liquid-soluble materials. One prototype robot dissolved almost entirely in acetone (the permanent magnet remained); another had components that were soluble in water.

“We complete the cycle from birth through life, activity, and the end of life,” Miyashita says. “The circle is closed.”

In all of the researchers’ prototypes, the self-folding sheets had three layers. The middle layer always consisted of polyvinyl chloride, a plastic commonly used in plumbing pipes, which contracts when heated. In the acetone-soluble prototype, the outer layers were polystyrene.



Comments



Log in to leave a Comment


in the Health & Sports Hub

Editors’ Picks

WiBotic PowerPad Wirelessly Charges Drones
WiBotic’s PowerPad wirelessly charges everything from large industrial drones to smaller...

Meet Jing Xiao: WPI’s New Director of Robotics
In January 2018, Jing Xiao will become the new director of the Robotics...

Disney: Focus on the Robot Experience
The robot experience included in a business strategy is important not only...

Flirtey Wants Drones to Deliver Defibrillators in Nevada
Flirtey and REMSA have partnered to use drones to delivery automated external...