Watch: MIT Drone Autonomously Avoids Obstacles at 30 MPH

The software runs 20 times faster than current solutions and maps the drone's environment in real time.

Photo Caption: In-flight snapshot of single-disparity stereo detections on a goalpost (blue boxes) and past detections integrated through the state estimate and reprojected back on the image (red dots). Overlay includes relevant flight data such as airspeed in MPH (left) and altitude in feet (right). (Credit: Andrew Barry/MIT CSAIL)

Obstacle avoidance needs to be the next big thing for drones. As 3D Robotics founder Chris Anderson said, the “mass jackassery” (reckless flying) needs to stop. It’s part of the reason we now have a mandatory drone registration system looming over us.

DJI has been on the forefront of avoidance technology for drones, recently introducing its Guidance system that uses multiple stereo and ultrasonic sensors that allows the drone to automatically avoid obstacles within 65 feet.

Andrew Barry, a PhD student at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL), is looking to push this technology to the next level. Barry and professor Russ Tedrake have created an obstacle-detection system that allows a drone to autonomously avoid obstacles in its flight path while flying 30 miles per hour.

CSAIL posted a fascinating video, which you can watch below, of Barry’s system helping a drone “dip, dart and dive” through a tree-filled field.

The drone in the video, which was made with off-the-shelf components for $1,700, weighs just over a pound and has a 34-inch wingspan. It has a camera on each wing and two processors that are “no fancier than the ones you’d find on a cellphone.”

MUST-READ: 6 Most Unique Drones You Must Fly

CSAIL says Barry’s software runs 20 times faster than existing obstacle detection software. Operating at 120 frames per second, the open-source software allows the drone to detect objects and map its environment in real time, extracting depth information at 8.3 milliseconds per frame.

“Sensors like lidar are too heavy to put on small aircraft, and creating maps of the environment in advance isn’t practical,” Barry says. “If we want drones that can fly quickly and navigate in the real world, we need better, faster algorithms.”

So, how does it work? We’ll let CSAIL explain:

“Traditional algorithms focused on this problem would use the images captured by each camera, and search through the depth-field at multiple distances - 1 meter, 2 meters, 3 meters, and so on - to determine if an object is in the drone’s path.

“Such approaches, however, are computationally intensive, meaning that the drone cannot fly any faster than 5 or 6 miles per hour without specialized processing hardware.

“Barry’s realization was that, at the fast speeds that his drone could travel, the world simply does not change much between frames. Because of that, he could get away with computing just a small subset of measurements - specifically, distances of 10 meters away.

“You don’t have to know about anything that’s closer or further than that,” Barry says. “As you fly, you push that 10-meter horizon forward, and, as long as your first 10 meters are clear, you can build a full map of the world around you.”

While such a method might seem limiting, the software can quickly recover the missing depth information by integrating results from the drone’s odometry and previous distances.




About the Author

Steve Crowe · Steve Crowe is managing editor of Robotics Trends. Steve has been writing about technology since 2008. He lives in Belchertown, MA with his wife and daughter.
Contact Steve Crowe: scrowe@ehpub.com  ·  View More by Steve Crowe.




Comments

DroneZon · January 3, 2017 · 3:31 pm

Nice article indeed. In 2016 we seen a few drones coming to the market with collision avoidance. Yuneec Typhoon H using Intel RealSense technology and DJI Phantom 4 using Vision / Ultrasonic sensors for obstacle detection and avoidance.  So for 2017 we should see many more collision avoidance drones coming on the market.


DroneZon · January 3, 2017 at 3:31 pm

Nice article indeed. In 2016 we seen a few drones coming to the market with collision avoidance. Yuneec Typhoon H using Intel RealSense technology and DJI Phantom 4 using Vision / Ultrasonic sensors for obstacle detection and avoidance.  So for 2017 we should see many more collision avoidance drones coming on the market.


Log in to leave a Comment

Article Topics

Robot Fun · Drones · News · Media · Videos · Drones · MIT · All Topics


Editors’ Picks

Meet Jing Xiao: WPI’s New Director of Robotics
In January 2018, Jing Xiao will become the new director of the Robotics...

Disney: Focus on the Robot Experience
The robot experience included in a business strategy is important not only...

Flirtey Wants Drones to Deliver Defibrillators in Nevada
Flirtey and REMSA have partnered to use drones to delivery automated external...

How Many Robots Does it Take to Screw in a Light Bulb?
Watch a Fetch robot with a custom soft robotic gripper use a...